搜索:
学院新闻
复旦大学基础医学院陆路、姜世勃研究团队合作研究研发出具有广谱抗人冠状病毒活性的多肽类融合抑制剂
发表时间:2019-04-11 阅读次数:1850次

        近日,复旦大学陆路/姜世勃研究团队与上海科技大学杨贝/Wilson研究团队通力合作,通过交叉运用多种不同的技术手段,研发了能够广谱抑制多种人冠状病毒(HCoV)感染的多肽类融合抑制剂EK1,并揭示了其作用靶点和发挥功能的分子机制。该研究同时证明了冠状病毒(CoV)刺突蛋白的HR1区域是一个重要且保守的药物作用靶点,为后续抗HCoVs的广谱药物研发提供了理论基础和重要思路。4月10日,该研究成果以“A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike”为题在线发表于Science子刊《科学进展》(Science Advances)上。
        近年来,严重急性呼吸综合征冠状病毒(Severe acute respiratory syndrome coronavirus, SARS-CoV)和中东呼吸综合征冠状病毒(Middle East respiratory syndrome coronavirus, MERS-CoV)等高致病性HCoVs的出现对人类的生命健康及社会的稳定发展带来了威胁,但目前临床上尚无获得批准的特异性抗SARS-CoV和MERS-CoV感染的药物。更为重要的是,自然界中广泛存在的其他CoVs也可能通过跨种传播感染人类。近期,世界卫生组织(WHO)提出要防御“Disease X”, 即由目前未知的病原体(包括新型冠状病毒)引起的严重国际大流行的人类疾病(http://www.who.int/blueprint/priority-diseases/en/)。因此,探寻在各种HCoVs上均保守的药物靶点,以及基于这些靶点研发广谱、高效的抗HCoVs药物成为本领域亟待解决的关键科学问题。该类研究也将为目前流行的HCoVs的防治和未来可能出现的新型HCoVs的防控提供解决方案和技术储备。
        复旦大学研究团队在2014年发表于《自然通讯》(Lu L et al., Nature Communications 5:3067, 2014)的前期相关工作中成功研发了靶向于MERS-CoVS蛋白上HR1区域的多肽类融合抑制剂MERS-HR2P,其可有效阻止MERS-CoV的感染过程。然而,尽管MERS-CoV和SARS-CoV同属β类HCoVs,MERS-HR2P却并不能有效抑制SARS-CoV的感染;同样,针对于SARS-CoV HR1的多肽也无法有效地抑制MERS-CoV感染。此外,上海科技大学研究团队的前期已发表工作也揭示,α-HCoVs与β-HCoVs的HR1s区域展示出不同的长度,并具有不同的表面电荷分布特征(Yan L et al., Acta Crystallogr D Struct Biol. 74:841-51, 2018),这一现象进一步增加了不同HCoVs间HR1s区域的差异。因此,这些HR1s靶点是否具有足够的保守性以支撑广谱抗HCoV融合抑制剂的研发在领域内一直存在争议。
        为解决该关键科学问题,联合研究团队建立了多个可模拟HCoVs感染过程的“细胞-细胞膜融合”系统,并通过交叉筛选的方式,发现一条具有广谱抗HCoV活性的多肽:OC43-HR2P。在此基础上,团队成员进一步优化序列,从而获得一条溶解度更好、抑制活性更高的多肽EK1。多肽EK1在α-HCoVs和β-HCoVs的假病毒和活病毒感染系统上均展示出广谱且高效的抗病毒活性(如Figure 1所示)。

 

Figure 1. The potent and broad-spectrum antiviral activity of EK1. A. The antiviral mechanism of HR2P peptides. B. The sequences of the designed peptides: HR1Ps, HR2Ps and EK1. C. Inhibitory activity of EK1 in cell-cell fusion mediated by the various CoV S proteins. D. Inhibitory activity of EK1 against pseudotypedCoVs infection. E. Inhibitory activity of EK1 on live HCoV replication for MERS-CoV, HCoV-OC43, HCoV-229E and HCoV-NL63, respectively.

 

        联合研究团队进一步解析了多肽EK1与分别来源于α和β类等多个不同HCoVs的HR1s的共晶结构。研究结果显示EK1可通过大量保守而又广泛的疏水及亲水相互作用与不同HCoVs的HR1s区域结合(如Figure 2所示)。研究还发现多肽EK1在与不同长度、不同理化特征的HR1s发生相互作用时具有很好的构象可塑性与表面电荷包容性,从而保障其可广谱地作用于α-HCoVs和β-HCoVs的HR1s区域。这些结果不仅从结构上揭示了多肽EK1广谱、高效抑制不同HCoVs感染的分子机制,同时也证明了HR1s在功能和结构上具有独特的保守性,可成为研发广谱抗HCoVs药物的重要靶点。

 

Figure 2. Structural Studies of EK1 in complex with the HR1 regions from MERS-CoV (A), SARS-CoV (B) and 229E (C) unravel the molecular basis for the pan-CoVinhibitory effect of EK1 peptide.1st panel: Structural comparison of the HR1-EK1 6-HB bundles and cognate HR1-HR2 6-HB bundles reveals that the EK1 peptide binds to the 3HR1 core of different HCoVs in a similar manner to that of thenative HR2 of corresponding HCoV. 2nd-4th panel: the extensive and highly-conserved hydrophobic and hydrophilic interactions between EK1 and different HR1s; EK1 residues that are involved in hydrophobic packing are shown as stick models on the electrostatic surfaces of 3HR1 cores(2nd panel), and HR1 residues from MERS-CoV, SARS-CoV and 229E that meditate highly conserved side chain–to-side chain (3rd panel) and side chain-to-main chain (4th panel) hydrophilic interactions with EK1 residues are boxed in cyan and red respectively.

 

        在上述研究的基础上,联合研究团队进一步开展了多肽EK1在动物体内抗病毒活性的研究。结果显示EK1在代表性病毒HCoV-OC43和MERS-CoV感染的小鼠模型上均展示出较好的体内抗病毒效果,并且该多肽在体内具有较好的安全性和和较低的免疫原性,提示其具有良好的应用前景,有被进一步开发成为用于防治目前流行的多种HCoVs和应对未来可能出现的新型HCoVs的特异性药物的潜力。
        复旦大学博士后夏帅、徐巍和上海科技大学博士研究生严磊为本文的共同第一作者,复旦大学陆路研究员和姜世勃教授、上海科技大学免疫化学研究所Co-PI杨贝和Ian A.Wilson教授为本文的共同通讯作者。本研究在复旦大学与上海科技大学等兄弟院校的通力合作下完成,并得到了中国疾控预防控制中心谭文杰教授、美国德克萨斯大学医学部Chien-TeK. Tseng教授等学者的大力支持与帮助;受到了来自于国家十三五传染病重大专项、国家自然科学基金面上项目等基金的资助。
 

 

责任编辑:刘晔瀚

 

Copyright 2012 ◎ 复旦大学基础医学院
地址:上海市医学院路138号 电话:021-54237900 传真: 021-64179832